Exploring the potential of thermal imaging data acquired by drone for the detection of water stress in lowbush blueberries

Carl Boivin

Researcher, agr., M.Sc.

418 643-2380
ext 430

Contact Carl Boivin

Description

The principle behind thermal imaging is based on the fact that plants under water stress have a lower transpiration rate and a higher canopy temperature than plants well supplied with water. Canopy temperatures captured by drone can be used to quickly evaluate water stress in crops like lowbush blueberries and guide decisions as to whether irrigation is required.

Objective(s)

  • Explore the potential of detecting water stress in lowbush blueberries using a thermal infrared imaging sensor installed on a drone

From 2017 to 2018

Project duration

Fruit production

Activity areas

Service

IRDA has recognized expertise in precision farming.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Institut national de la recherche scientifique

This may interest you

2016-2019 • Fruit production

Control strategies to reduce the impact of the spotted wing drosophila

This project aims to promote a biocontrol solution by testing a complex of natural enemies that attack the spotted wing drosophilia at different development stages.

Researcher: Annabelle Firlej

Read more about the project

Annabelle Firlej

Assessing the economic impact of fungicide resistance in horticultural corps

Project initiated to review the knowledge on the fungicide resistance of various pathogens to provide a preliminary assessment of the economic impacts of fungicide resistance.

Researcher: Luc Belzile

Read more about the project

2021-2023 • Fruit production

Improve the environmental conditions of cultivated wild blueberries using cultural practices relating to tillage, water management and fertilization

The results of this project will provide tools to support producers and ensure the competitiveness and development of Wild Boreal Blueberry and organic blueberry production sectors, two of Quebec’s specialties.

Researcher: Carl Boivin

Read more about the project

Carl Boivin
F