Exclusion nets made from biobased polymers

Gérald Chouinard, researcher

Gérald Chouinard

Researcher, agr., Ph.D.

450 653-7368
ext 340

Contact Gérald Chouinard
Daniel Cormier, researcher

Daniel Cormier

Researcher, Ph.D.

450 653-7368
ext 360

Contact Daniel Cormier

Description

The purpose of this project is to test the general hypothesis that biobased polymers can be used to replace fossil-fuel-based products to make better exclusion nets for protecting fruit and vegetable crops from pests and disease and further reduce the use of pesticides without increasing GHG emissions.

Objective(s)

  • Evaluate the potential for using a biopolymer to make exclusion nets for protecting high-value fruits and vegetables
  • Characterize the physical and chemical properties of candidate biopolymers
  • Improve the ability of nets made of biopolymers to exclude pests by modifying their surfaces at the nanometric (diseases) and millimetric (insects) levels

From 2017 to 2019

Project duration

Fruit production

Activity areas

Pest, weed, and disease control

Service

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation | Dubois Agrinovation | Polytechnique Montréal | McGill University

Publications

This may interest you

2017-2018 • Fruit production

Exploring the potential of thermal imaging data acquired by drone for the detection of water stress in lowbush blueberries

Exploration of the potential of detecting water stress in lowbush blueberries using a thermal infrared imaging sensor installed on a drone.

Researcher: Carl Boivin

Read more about the project

Carl Boivin
2015-2018 • Fruit production

Repellent properties of exclusion nets used for the control of leafroller and stink bug pests of apples

The aim of the project was to measure the effect of certain natural repellents that can be used on different types of exclusion nets.

Researcher: Gérald Chouinard

Read more about the project

Gérald Chouinard
2014-2017 • Fruit production

Mating disruption as a new control method for the dogwood borer

This project consisted of using mating disruption to control dogwood borers in five orchards.

Researcher: Daniel Cormier

Read more about the project

Daniel Cormier
F