Developing new techniques to control water table levels in sphagnum farming

Stéphane Godbout

Researcher, P.Eng., agr., Ph.D.

418 643-2380
ext 600

Contact Stéphane Godbout

Description

It has been shown that maintaining the water table close to the soil surface helps sphagnum moss grow and reduces CO2 emissions from sphagnum farms. The objective of this project was to develop effective techniques for controlling water table levels in sphagnum moss basins. Underground irrigation systems were installed at a number of experimental sites. The effectiveness of the systems was evaluated by monitoring water levels at different locations in the sphagnum basins.

Objective(s)

  • Determine optimal parameters for designing underground irrigation systems
  • Evaluate the behavior of water table levels and determine key control parameters for maintaining an ideal moisture level in the sphagnum mat
  • Develop a basic moisture balance strategy to allow automation of the irrigation system

From 2013 to 2017

Project duration

Field crops

Activity areas

Water protection,

Services

This project will help reduce CO2 emissions from peatlands.

Partners

Association des producteurs de tourbe horticole du Québec | Université Laval

This may interest you

2019-2022 • Field crops

Measuring the impact of winter vs. spring cereals on profitability, soil health, and pesticide use

Ten test sites will operate over a two-year period on farms spread over ten Québec regions to compare the performance of winter and spring cereals.

Researchers: Marc-Olivier Gasser Caroline Côté Luc Belzile

Read more about the project

Marc-Olivier Gasser
Caroline Côté
2018-2022 • Field crops

Biological control of cabbage seedpod weevil in the Prairies – Economic Analysis

The goal of the project is to improve biological methods for controlling the cabbage seedpod weevil in canola crops. In this project, initiated by Agriculture and Agri-Food Canada and conducted in Québec by UQAM, IRDA is performing an economic analysis of the practices under study.

Researcher: Luc Belzile

Read more about the project

2019-2022 • Field crops

Using controlled drainage to optimize water and nutrient uptake by crops

This project relies on the continuous measurement of field water table heights; water exports; as well as sediment, nitrogen, and phosphorus runoff into drains at four field-crop production sites.

Read more about the project

Aubert Michaud, retraité
F