Developing new techniques to control water table levels in sphagnum farming

Stéphane Godbout

Researcher, P.Eng., agr., Ph.D.

418 643-2380
ext 600

Contact Stéphane Godbout

Description

It has been shown that maintaining the water table close to the soil surface helps sphagnum moss grow and reduces CO2 emissions from sphagnum farms. The objective of this project was to develop effective techniques for controlling water table levels in sphagnum moss basins. Underground irrigation systems were installed at a number of experimental sites. The effectiveness of the systems was evaluated by monitoring water levels at different locations in the sphagnum basins.

Objective(s)

  • Determine optimal parameters for designing underground irrigation systems
  • Evaluate the behavior of water table levels and determine key control parameters for maintaining an ideal moisture level in the sphagnum mat
  • Develop a basic moisture balance strategy to allow automation of the irrigation system

From 2013 to 2017

Project duration

Field crops

Activity areas

Water protection, Optimal water management

Services

This project will help reduce CO2 emissions from peatlands.

Partners

Association des producteurs de tourbe horticole du Québec | Université Laval

This may interest you

A study on the health of agricultural soils in Quebec

The project consists of evaluating soil degradation based on representative samples taken in Québec’s main soil regions and parent materials.

Read more about the project

Marc-Olivier Gasser
Claude Bernard
Catherine Bossé
2019-2023 • Field crops

Improving nitrogen management in Québec grain corn

This project will determine the optimal post-emergent nitrogen dose to apply.

Researcher: Christine Landry

Read more about the project

Christine Landry
2019-2021 • Field cropsMarket gardening

OGeMOS Project: Developing and deploying an online tool for managing soil organic matter

This project will develop a versatile tool that will allow to simulate the impacts of agricultural practices on soil organic matter.

Read more about the project

Aubert Michaud, retraité
Marc-Olivier Gasser
Simon Ricard