Improving the efficiency of rainwater and irrigation use in the potato cropping system

Carl Boivin, researcher

Carl Boivin

Researcher

418 643-2380
ext 430

Contact Carl Boivin

Description

This project proposes an intervention in a typical potato cropping system to enhance the crop uptake of water and nitrogen. We propose interventions that will increase the water-retention capacity (rainfall or irrigation) of the cropping system and increase the volume of soil colonized by the roots, where the nitrogen supplied has the potential to be taken up by the crop. With these interventions it should be possible to reduce the amount of nitrogen introduced in the form of fertilizer and, thus, reduce the risk of groundwater contamination.

Objective(s)

  • Intervene to increase the weight of tubers produced per unit of nitrogen supplied, and
  • Intervene to increase the quantity of tubers produced per unit of irrigation water supplied.
  • Compare the cropping systems, in terms of profit potential, with regards to their adoption and utilization.

From 2018 to 2019

Project duration

Field crops

Activity areas

Optimal water management, Fertilizer management

Services

Optimal water management enhances crop performances and reduces the use of organic and mineral fertilizers.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec - Direction régionale de la Côte-Nord, Ferme Victorin Drolet, Ferme F. X. Orléans

This may interest you

Organic corn
2015-2018 • Field crops

Developing a nitrogen fertilization program based on green manure supplemented by a manure-based starter fertilizer in organic grain production

In a wheat/grain corn/soya rotation, green manure can be used to obtain profitable organic grain corn yields while limiting phosphorus pollution.

Researcher: Christine Landry

Read more about the project

Christine Landry
Cover crop
2016-2018 • Field crops

Profitability evaluation of cover crops at the farm level

The project was designed to assess the profitability of various types of cover crops and planting methods at the farm level.

Researcher: Luc Belzile

Read more about the project

Luc Belzile
Soy field
2019-2021 • Field crops

Validating and implementing a predictive model of soybean sclerotinia stem rot in Québec

A better understanding of risk factors that favour the development of this disease will help Québec farmers adopt more environmentally friendly and cost-effective control strategies.

Researcher: Marc-Olivier Gasser

Read more about the project

Marc-Olivier Gasser