Adapting quantitative detection methods for determining silver scurf injury thresholds both in the soil and on seed potatoes to model potential economic losses

Richard Hogue, researcher

Richard Hogue

Researcher

418 643-2380
ext 420

Contact Richard Hogue

Description

The fungal pathogen Helminthosporium solani causes silver scurf, a disease that is hard to detect, both in the soil and on harvested potatoes. The disease reduces yields and affects the appearance of the tubers, especially after storage. Fresh potato marketing strategies are based on plastic packaging and the appearance of the potatoes plays an important role. Sensitive, accurate, and affordable silver scurf detection tests are needed to reduce losses. Quantitative PCR (qPCR) tests on soil samples or potato tubers can be used to determine infection thresholds above which the risk of economic loss at planting or after storage is too high. These innovative models for quantifying and estimating the economic risk of disease transmission are a key factor in maintaining and enhancing the competitiveness of Québec potato farms.

Objective(s)

  • Develop qPCR tests to determine the prevalence and detection rates of silver scurf (Helminthosporium solani) on potato tubers and in soil samples.
    Determine economic injury levels for silver scurf with respect to potato quality
  • Develop innovative models to predict economic loss based on economic injury thresholds that can be applied to different stages of seed and fresh potato production
  • Publish a guide on good practices for managing silver scurf in seed and fresh potato production and storage

From 2016 to 2017

Project duration

Market gardening

Activity areas

Pest, weed, and disease control, Food safety and quality

Services

This innovative model for quantifying and estimating economic risks will help enhance the competitiveness of Québec potato farms.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Growing Forward 2 | Groupe Pousse-Vert | Phytodata | ProgesT2001

This may interest you

Potato field
2019-2022 • Market gardening

Developing a soil microbiome monitoring method to select potato crop management practices that reduce soil-borne pathogens and pesticide applications

Method to monitor and control telluric pathogens affecting potatoes that takes into account the interactions between these pathogens and other soil microbiome organisms.

Researchers: Richard Hogue Luc Belzile

Read more about the project

Richard Hogue
Luc Belzile
Farm - Ìle d'Orléans

Île d’Orléans farmers rally to tackle water shortage

This project aims to explore and experiment new approaches and ways to preserve, develop, and enhance the MRC’s bio-food sector, and reduce or eliminate the water deficit on the island.

Read more about the project

Carl Boivin
Stéphane Godbout
Strawberry fields forever
2014-2017 • Market gardening

Identifying the causes of strawberry decline disease with a view to developing an integrated control strategy

This project involved an exhaustive survey of viruses, phytoplasma, fungi, and nematodes in nurseries and strawberry fields to determine the exact causes of strawberry decline disease in Québec. 

Researcher: Richard Hogue

Read more about the project

Richard Hogue