Validation of soil health indicators as a nitrogen uptake prediction tool

Christine Landry, researcher

Christine Landry

Researcher, agr., Ph.D.

418 643-2380
ext 640

Contact Christine Landry

Description

The purpose of this project is to establish a link between soil health and biological (respiration, nitrogen, and functional groups [genomic and PCR]), physical (aggregation and compaction), and chemical criteria used in the Cornell soil health assessment. The objective is to develop a prediction model for soil nitrogen supplies based on biological soil health indicators.

An accurate estimate of soil nitrogen would enable growers to reduce mineral fertilizer applications for the same crop yields, which would have a direct impact on input costs and reduce nitrogen leaching into the environment. The tests are being conducted on grain corn because it is a nitrogen-hungry crop and has a strong impact on soil quality.

Objective(s)

  • Correlate soil health parameters with crop yields and the soil’s ability to supply nitrogen
  • Develop a predictive model of soil nitrogen availability based on biological parameters used in the Cornell, Haney, and biological function tests
  • Transfer the predictive models and analytical methods to industry stakeholders, i.e., advisory groups and soil analysis labs

From 2017 to 2020

Project duration

Field crops

Activity areas

Fertilizer management

Service

Accurate estimates of soil nitrogen supply can be used to reduce mineral fertilizer applications.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | EnvironeX Group

This may interest you

2015-2018 • Field crops

Chia: a new crop for organic production in Québec

This two-year project, conducted at the Organic Agriculture Innovation Platform, compared the effect of three seeding dates and three seeding rates on chia yields.

Read more about the project

2017-2019 • Field crops

Economic analysis of planting flower strips along soybean fields

Economic analysis of using flower strips around soybean fields to serve as a reservoir for aphid species attacked by Pandora neoaphidis.

Researcher: Luc Belzile

Read more about the project

2017-2021 • Field crops

Maintaining high yields in field crops while reconsidering the option of using glyphosate

The aim of the project is to assess the impact of applying various rates of glyphosate in field crop systems on the soil and crop rhizosphere microbiome.

Researcher: Richard Hogue

Read more about the project

Richard Hogue
F