Utilizing high-throughput sequencing to identify plant pathogens

Richard Hogue, researcher

Richard Hogue

Researcher

418 643-2380
ext 420

Contact Richard Hogue
Luc Belzile, researcher

Luc Belzile

Researcher

418 643-2380
ext 630

Contact Luc Belzile

Description

This project aims to evaluate and develop a high-throughput sequencing-based diagnostic procedure to

  • provide an accurate assessment of its pathogen recognition capability in comparison with conventional diagnostic approaches;
  • develop processes adapted for both diagnosis and detection that are rapid, accurate, and cost-effective;
  • develop an intuitive Web interface to provide for rapid and easy data interpretation, and
  • allow for the knowledge transfer and validation of the high-throughput sequencing diagnostic strategy and the integration of a specialized and tested database that will increase data processing speed via a Web interface.

This innovative diagnostic approach will significantly contribute to the development and adoption of diagnostic methods that rely on high-throughput sequencing, thereby simplifying the diagnosis process.

Objective(s)

  • Demonstrate that this technique allows for the simultaneous, rapid, and accurate identification of pathogenic organisms responsible for major diseases in field crops, potatoes, and market garden crops.
  • Produce an accurate assessment of its pathogen recognition capability.
  • Establish procedures adapted to both diagnosis and detection that are rapid, accurate, and cost-effective.
  • Develop an intuitive Web interface to provide for rapid and easy data interpretation.

From 2019 to 2023

Project duration

Market gardening

Activity areas

Soil health

Service

DNA sequencing can be used to inventory all the organisms living in a soil sample.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Centre de recherche du CHU de Québec-Université Laval | Centre de recherche sur les grains

This may interest you

Garlic field
2019-2023 • Market gardening

Developing fertilization strategies for organic garlic farming that combine green and farmyard manure, while taking their N and P supply dynamics and soil quality impacts into account

By enhancing our understanding: 1) of the nitrogen supply dynamics associated with the use of mixed green and farmyard manure applications, and 2) of the timeline of nitrogen uptake by garlic; we hope to fine-tune fertilization strategies so they meet the needs of garlic crops, while minimizing phosphorus accumulation and nitrogen leaching.

Researcher: Christine Landry

Read more about the project

Christine Landry
Drone
2017 • Market gardening

A study on the relationship between thermal imaging data collected by drone and agrometerological indicators of water stress in potato crops

The aim of this project was to study the relationship between thermal imaging data collected by drone and agrometerological indicators of water stress in potato crops.

Researcher: Carl Boivin

Read more about the project

Carl Boivin
Irrigation pond

Control measures to reduce clogging in a St. Lawrence River water treatment process using slow sand filtration

To manage clogging risks, the project automated pumping based on water turbidity and cover the filter to prevent light from entering the water and thus reduce algal bloom. 

Researcher: Caroline Côté

Read more about the project

Caroline Côté