Utilizing high-throughput sequencing to identify plant pathogens

Richard Hogue, researcher

Richard Hogue

Researcher, Ph.D.

418 643-2380
ext 420

Contact Richard Hogue

Luc Belzile

Description

This project aims to evaluate and develop a high-throughput sequencing-based diagnostic procedure to

  • provide an accurate assessment of its pathogen recognition capability in comparison with conventional diagnostic approaches;
  • develop processes adapted for both diagnosis and detection that are rapid, accurate, and cost-effective;
  • develop an intuitive Web interface to provide for rapid and easy data interpretation, and
  • allow for the knowledge transfer and validation of the high-throughput sequencing diagnostic strategy and the integration of a specialized and tested database that will increase data processing speed via a Web interface.

This innovative diagnostic approach will significantly contribute to the development and adoption of diagnostic methods that rely on high-throughput sequencing, thereby simplifying the diagnosis process.

Objective(s)

  • Demonstrate that this technique allows for the simultaneous, rapid, and accurate identification of pathogenic organisms responsible for major diseases in field crops, potatoes, and market garden crops.
  • Produce an accurate assessment of its pathogen recognition capability.
  • Establish procedures adapted to both diagnosis and detection that are rapid, accurate, and cost-effective.
  • Develop an intuitive Web interface to provide for rapid and easy data interpretation.

From 2019 to 2023

Project duration

Market gardening

Activity areas

Soil health

Service

DNA sequencing can be used to inventory all the organisms living in a soil sample.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Centre de recherche du CHU de Québec-Université Laval | Centre de recherche sur les grains

This may interest you

2017-2018 • Market gardening

Impact of composite hedges on natural enemies and pollinators in an organic polyculture system in Qu├ębec

This project will provide a better understanding of interactions between a vegetable polyculture system and hedges composed of shrubs and perennials in order to enhance the impact of beneficial insects on vegetable crops.

Read more about the project

2016-2017 • Market gardening

Adapting quantitative detection methods for determining silver scurf injury thresholds both in the soil and on seed potatoes to model potential economic losses

The fungal pathogen Helminthosporium solani causes silver scurf, a disease that is hard to detect, both in the soil and on harvested potatoes.

Researcher: Richard Hogue

Read more about the project

Richard Hogue
F