Control measures to reduce clogging in a St. Lawrence River water treatment process using slow sand filtration

Caroline Côté, researcher

Caroline Côté

Researcher

450 653-7368
ext 310

Contact Caroline Côté

Description

Previous studies showed that measures were required to control populations of E. coli and zebra mussel larva in water from the St. Lawrence. A system using slow sand filtration and an aerated pond was therefore installed at a farm on Île d'Orléans. Although this system has been proven to be effective for resolving both these problems, the sand filter can become clogged due to increased turbidity levels in the river at certain times of year and algal blooms in the water column above the filter. To manage this clogging risk, the project automated pumping based on water turbidity and cover the filter to prevent light from entering the water and thus reduce algal bloom. These control measures will improve technology transfer to other farmers who want to draw water from the river.

Objective(s)

  • Determine the impact of methods of controlling suspended solids and algae on clogging of the sand filter
  • Measure the effect of water turbidity on clogging of the sand filter in the lab
  • Automate pumping from the river based on water turbidity
  • Determine the effectiveness of covering the filter for algae control

From 2015 to 2018

Project duration

Market gardening, Fruit production, Field crops

Activity areas

Food safety and quality, Optimal water management

Services

Thanks to IRDA, it is possible for growers to tap into the Saint-Lawrence as an irrigation resource.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Université Laval | Ferme François Gosselin | Université de Sherbrooke

This may interest you

Strawberry fields forever
2014-2017 • Market gardening

Identifying the causes of strawberry decline disease with a view to developing an integrated control strategy

This project involved an exhaustive survey of viruses, phytoplasma, fungi, and nematodes in nurseries and strawberry fields to determine the exact causes of strawberry decline disease in Québec. 

Researcher: Richard Hogue

Read more about the project

Richard Hogue
Green manure
2014-2017 • Market gardeningField crops

Effect of legumes, manure, and compost on soil nitrogen dynamics and microbial diversity under organic production

Using a split-split-plot design, this study tested three variables: soil tillage, crop rotation in organic production, and fertilization with manure or compost.

Researcher: Caroline Côté

Read more about the project

Caroline Côté
Potatoes
2017-2019 • Market gardening

Cost-effectiveness of irrigation on Québec potato farms

The aim of this project is to evaluate this aspect of potato production economics to assist producers and their advisors.

Researcher: Luc Belzile

Read more about the project

Luc Belzile