A study on the relationship between thermal imaging data collected by drone and agrometerological indicators of water stress in potato crops

Carl Boivin

Researcher, agr., M.Sc.

418 643-2380
ext 430

Contact Carl Boivin

Description

Thermal infrared remote sensing (TIRS) has already shown strong potential for detecting water stress in crops. Although TIRS sensors installed on drones could replace those on satellites, they are not yet widely used.

The aim of this project was to study the relationship between thermal imaging data collected by drone and agrometerological indicators of water stress in potato crops to develop water stress indicators that can be measured by drone.

These indicators can be used to optimize irrigation in potato crops by enabling growers to apply the right amounts of water at the right times in the right places.

Objective(s)

  • Study the relationship between thermal imaging data collected by drone and agrometerological indicators of water stress in potato crops to develop water stress indicators that can be measured by drone

2017

Project duration

Market gardening

Activity areas

Service

With precision farming, farmers can provide the right amount of irrigation at the right times and in the right places.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Institut national de la recherche scientifique | Ferme Victorin Drolet

This may interest you

2018-2019 • Market gardening

Evaluating a protocol for growing organic market garden cabbage using split band applications of granulated laying-hen droppings

This project aims to develop a GHD-based fertilizer management system using split band applications for high-N-demand crops grown in rows, e.g., summer cabbage.

Researcher: Christine Landry

Read more about the project

Christine Landry
2014-2017 • Market gardening

Impact of green manure and organic fertilizers on the yields and safety of organic carrots grown on muck soil

Plots were set up at the Organic Agriculture Innovation Platform in St-Bruno-de-Montarville, Québec.

Researcher: Caroline Côté

Read more about the project

Caroline Côté
2014-2018 • Market gardening

Control strategies for swede midge in organic production

This project evaluated effective and economically viable control strategies for swede midge that are healthy for both humans and the ecosystem.

Read more about the project

F