Developing new techniques to control water table levels in sphagnum farming

Stéphane Godbout

Researcher, P.Eng., agr., Ph.D.

418 643-2380
ext 600

Contact Stéphane Godbout

Description

It has been shown that maintaining the water table close to the soil surface helps sphagnum moss grow and reduces CO2 emissions from sphagnum farms. The objective of this project was to develop effective techniques for controlling water table levels in sphagnum moss basins. Underground irrigation systems were installed at a number of experimental sites. The effectiveness of the systems was evaluated by monitoring water levels at different locations in the sphagnum basins.

Objective(s)

  • Determine optimal parameters for designing underground irrigation systems
  • Evaluate the behavior of water table levels and determine key control parameters for maintaining an ideal moisture level in the sphagnum mat
  • Develop a basic moisture balance strategy to allow automation of the irrigation system

From 2013 to 2017

Project duration

Field crops

Activity areas

Water protection,

Services

This project will help reduce CO2 emissions from peatlands.

Partners

Association des producteurs de tourbe horticole du Québec | Université Laval

This may interest you

2014-2017 • Field crops

Determining the ideal time to spread pig manure to improve crop yield and protect soil, water, and air quality

To provide information on the fertilizing value and environmental impact of spreading pig manure at different times, the project compared the effect of mineral fertilizer in early fall, late fall, and in the spring.

Read more about the project

2016-2018 • Field crops

Promoting undersown clover cover crops in small grain production: A network of farm demonstration plots across Québec

Demonstration project to showcase the ability of undersown clover cover crops to reduce nitrogen fertilizer requirements in crops.

Researcher: Marc-Olivier Gasser

Read more about the project

Marc-Olivier Gasser
F