Reducing N2O emissions through best fertilization practices

Simon Ricard


418 643-2380
ext 691

Contact Simon Ricard


Nitrogen fertilizers are essential for the production of high-yielding protein-rich cereal crops in Quebec. However, high nitrogen concentration in agricultural soil is linked to emissions of nitrous oxide (N2O), a potent greenhouse gas and ozone depleting substance. The agricultural sector needs to control direct N2O emissions produced by soils as well as indirect N2O emissions that occur when nitrate leaching from agricultural fields is transformed into N2O in downstream ecosystems. The overall objective of this study is to determine which nitrogen conservation practices are the most effective in reducing N2O emissions from fertilizers on Quebec farms. This work will contribute to the development of a robust and reliable quantification protocol for N2O emission reductions from Quebec farms.


• Evaluate how nitrogen conservation practices in nitrogen-demanding maize agroecosystems can reduce N2O emissions and leached nitrates from inorganic fertilizers;
• Quantify the reduction in N2O emissions and nitrate leaching that can be achieved when fertilizers are applied in corn agroecosystems during the growing season compared to fall applications;
• Assign N2O reduction coefficients to fertilization practices that emit less N2O than the reference level of IPCC-Tier I and Canadian-Tier II methods.

From 2021 to 2024

Project duration

Air quality



  • Program to support the fight against climate change in agriculture (PALCCA-MAPAQ)
  • McGill University

This may interest you


Hydrometric monitoring of the Ruisseau Bouchard watershed

This project will assist with the ongoing hydrometric monitoring of the flux and quality of water in Ruisseau Bouchard.

Read more about the project

Aubert Michaud, retraité

Field tests on the potential of pelleted grocery fruit and vegetable waste as fertilizer and animal feed

The purpose of this project was to field-test pelleted grocery fruit and vegetable waste as a fertilizer or high-carbon soil amendment.

Researcher: Christine Landry

Read more about the project

Christine Landry

Pyrolysis of agricultural residues to produce bio-oil having No.2 fuel oil characteristics for greenhouse heating systems

The project generated scientific knowledge to produce bio-oil from rapid pyrolysis using plastic residues.

Researcher: Stéphane Godbout

Read more about the project

Stéphane Godbout