Large-scale use of codling moth mating disruption in Quebec orchards

Daniel Cormier, researcher

Daniel Cormier

Researcher, Ph.D.

450 653-7368
ext 360

Contact Daniel Cormier

Description

The aim of our project was to increase the acreage on which mating disruption is used against the codling moth in all of Québec’s apple-growing regions. This will significantly reduce the number of insecticide sprays for this pest and the associated risks to better protect human health and the environment.

Objective(s)

  • Raise awareness among Québec apple growers about this alternative to insecticides
  • Increase the Québec apple orchard acreage using codling moth mating disruption to 25% by the end of the project
  • Reduce by 25% the number of insecticide sprays for the codling moth applied by producers using mating disruption

From 2016 to 2018

Project duration

Fruit production

Activity areas

Pest, weed, and disease control

Service

By 2017, 137 Québec orchards, an area equivalent to 2,800 football fields, were using mating disruption to control codling moth.

Partner

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec - Prime-Vert Programme

Publications

This may interest you

2018-2020 • Fruit production

Evaluating techniques to interrupt the developmental cycle of spotted wing drosphila overwintering in Québec

The project’s overall goal is to slow the arrival of Spotted Wing Drosophila in crop plots using mass trapping at overwintering sites.

Researcher: Annabelle Firlej

Read more about the project

Annabelle Firlej
2016 • Fruit production

Detecting spores of Pucciniastrum geopertianum, the fungus that causes blueberry witches’ broom rust

The aim of the project was to determine whether the witches’ broom symptom on blueberries is really caused by the rust Pucciniastrum geopertianum, which attacks balsam.

Researcher: Richard Hogue

Read more about the project

Richard Hogue
2015-2019 • Fruit production

Sound water management for lowbush blueberries under fluctuating and changing climatic conditions

Using sound irrigation management to control frost and water stress in lowbush blueberry helps stabilize yield while minimizing environmental impacts.

Researcher: Carl Boivin

Read more about the project

Carl Boivin
F