A new molecular approach to simultaneously detect disease-causing viruses in raspberries and strawberries

Richard Hogue, researcher

Richard Hogue

Researcher

418 643-2380
ext 420

Contact Richard Hogue
Luc Belzile, researcher

Luc Belzile

Project manager

418 643-2380
ext 630

Contact Luc Belzile

Description

The aim of this project is to use high-throughput sequencing (HTS) techniques to develop a process for detecting and identifying viruses (PDIV). The process will combine HTS with innovative bioinformatic analysis tools so that, using a single analysis, plant pathologists will be able to receive, via a user-friendly interface, a quantitative verdict regarding the presence and identity of all viruses infecting the sample.

To ensure the accurate detection and identification of all raspberry and strawberry viruses, the project will develop

  • a benchmark collection of viral sequences derived from the genome for each known virus, and
  • a collection of asymptomatic samples and symptomatic samples infected with one or more viruses.

A database with all the HTS sequences will be linked to a database of the agronomic, environmental, and diagnostic parameters for each sample. During trials, these sequence collections and databases will be used to demonstrate the superior diagnostic efficacy of the PDIV compared to reference protocols used by Laboratoire d’expertise et de diagnostic en phytoprotection (LEDP).
An economic analysis will compare the costs of implementing and utilizing the LEDP and PDIV tests, and the benefits derived from using the PDIV.

Objective(s)

  • Develop a fast and sensitive molecular detection methodology able to accurately identify raspberry and strawberry viruses. This process for detecting and identifying viruses (PDIV), by combining high-throughput sequencing techniques with innovative bioinformatic analysis and machine learning tools, will provide plant pathologists with a quantitative verdict and recommendations.
  • Develop a collection of virus-infected samples and genomic sequences for each targeted virus.
  • Compare the effectiveness of current diagnostic methods with that of the PDIV.
  • Compare the costs of utilizing and implementing current diagnostic methods and the PDIV.
  • Train the staff at MAPAQ Laboratoire d’expertise et de diagnostic en phytoprotection and other potential users in the utilization of the PDIV, its database, and its user-friendly interface.

From 2019 to 2023

Project duration

Fruit production

Activity areas

Soil health, Pest, weed, and disease control

Services

With high-throughput sequencing, users can identify all viruses infecting a sample with a single analysis.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Centre de recherche du CHU de Québec-Université Laval | Ferme Onésime Pouliot | Phytoclone

This may interest you

Plum curculio
2015-2017 • Fruit production

Attract and kill strategies for control of the plum curculio in conventional and organic apple orchards

An attract and kill technique to control plum curculio was recently proposed by U.S. researchers, but it is very little used in orchards and virtually unknown in Québec.

Researcher: Gérald Chouinard

Read more about the project

Gérald Chouinard
Orchard spraying
2018-2022 • Fruit production

Demo plots for low-risk apple IPM programs

The overall objective of the project is to inform apple growers via regional demonstration plots of the latest apple IPM techniques.

Read more about the project

Gérald Chouinard
Vincent Philion
Daniel Cormier
2018-2020 • Fruit production

Evaluating techniques to interrupt the developmental cycle of spotted wing drosphila overwintering in Québec

The project’s overall goal is to slow the arrival of Spotted Wing Drosophila in crop plots using mass trapping at overwintering sites.

Researcher: Annabelle Firlej

Read more about the project

Annabelle Firlej