Using controlled drainage to optimize water and nutrient uptake by crops

Aubert Michaud, retraité

Researcher, Ph.D.

Contact Aubert Michaud, retraité

Description

This project seeks to improve crop water supply and even limit topsoil nutrient runoff into waterways through the improved management of subsurface drainage systems. This will involve the installation of control units at the drain collector outlets. Our approach relies on the continuous measurement of field water table heights; water exports; as well as sediment, nitrogen, and phosphorus runoff into drains at four field-crop production sites in Montérégie. We will supplement our assessment of the controlled drainage trial results from these four sites with crop yield data. This will allow us to fine tune the system to yield optimal agronomic, economic, and environmental benefits.

Objective(s)

  • Assess the agronomic and environmental benefits derived from a controlled drainage practice adjusted for the season (precision drainage).
  • Assess the impact of subsurface drainage management with regard to
    • water table retention and the preservation of a water balance conducive to high quality soil and improved crop growth,
    • the prevention of nitrogen and phosphorus runoff into subsurface drains, and
    • crop yield and quality.

From 2019 to 2022

Project duration

Field crops

Activity areas

Soil health

Service

Controlled drainage can reduce nutrient runoff into waterways.

Partners

Ferme Astral | Groupe Pro-Conseil | Les Semis 2000 Plus | Ministère de l'Agriculture, des Pêcheries et de l'Alimentation

This may interest you

2013-2017 • Field crops

Developing new techniques to control water table levels in sphagnum farming

The objective of this project was to develop effective techniques for controlling water table levels in sphagnum moss basins. Underground irrigation systems were installed at a number of experimental sites.

Researcher: Stéphane Godbout

Read more about the project

Stéphane Godbout
2019-2021 • Field crops

Analyzing the cost-effectiveness of adopting integrated pest control management for field and horticulture crops.

Collaboration for a cost-effectiveness analysis to identify the most promising practices and strategies to reduce the use of pesticide.

Researcher: Luc Belzile

Read more about the project

2016-2018 • Field crops

Identifying biological indicators of soil health using metagenomic analysis of soil under different grain cropping systems

This project was aimed at identifying and incorporating biological indicators into decision support tools used to assist producers and agroenvironmental regulatory bodies seeking to preserve soil productivity and use sustainable production systems.

Researcher: Richard Hogue

Read more about the project

Richard Hogue
F