Developing a soil microbiome monitoring method to select potato crop management practices that reduce soil-borne pathogens and pesticide applications

Richard Hogue, researcher

Richard Hogue

Researcher

418 643-2380
ext 420

Contact Richard Hogue
Luc Belzile, researcher

Luc Belzile

Project manager

418 643-2380
ext 630

Contact Luc Belzile

Description

The project will employ four experimental approaches to compare, with or without pesticides, the impact of three different crop rotation protocols that differ with respect to the diversity gradient of the plants sown. A conventional protocol will include a cash crop. The green manure rotation protocol will include one or two green manure crops amid the main crop. The ecologically intensive protocol will include a number of green manure crops. Green manure crops generate systemic ecobenefits that improve soil health and boost the biodiversity of bio-organisms instrumental to crop health. This greater diversity reduces weed incidence and, consequently, the need for herbicide applications. The results of the four experimental approaches—along with a database of 280 potato crop soil microbiomes, for which the yields and incidence of a number of soil diseases have been measured—will be used to fine-tune a soil microbiome monitoring method. This method and the results of the economic assessment of the protocols studied will serve as decision-making tools for farmers and agronomists.

Objective(s)

  • Develop a method to monitor and control telluric pathogens affecting potatoes that takes into account the interactions between these pathogens and other soil microbiome organisms.
  • Model the interactions between the pathogens and soil microbiome organisms for four potato production systems subject to different crop rotation protocols.
  • Test the interaction model using soil microbiome analysis results from 70 potato fields cultivated using a range of production systems and validate the results with the appropriate diagnostic tools.
  • Propose an approach and a decision-support tool for identifying at-risk soils and formulate recommendations related to crop rotations and crop management practices.
  • Conduct an economic assessment of the control methods associated with different crop management protocols.

From 2019 to 2022

Project duration

Market gardening

Activity areas

Soil health, Pest, weed, and disease control, Laboratory analyzes

Services

The methodology developed in this project will help farmers and agronomists reduce herbicide use.

Partners

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec | Carrefour industriel et expérimental de Lanaudière (CIEL) | Centre de recherche Les Buissons | Cultures H. Dolbec | Pro-Champs 2001 | SCV Agrologie | Université Laval

This may interest you

Cauliflowers
2014-2018 • Market gardening

Control strategies for swede midge in organic production

This project evaluated effective and economically viable control strategies for swede midge that are healthy for both humans and the ecosystem.

Read more about the project

Potato field
2016-2019 • Market gardening

Integrated approach to nitrogen fertilization for profitable organic potato production and a balanced phosphorus budget

There is a great need to test green manure as a main source of nitrogen for potatoes as they help to maintain soil quality and control weeds.

Researcher: Christine Landry

Read more about the project

Christine Landry
Oz weeding robot
2020-2023 • Market gardening

Assessing a weeding robot for use in organic market gardening

New, robotic weed control strategy for widespread use in field vegetables grown organically in Québec.

Researcher: Maryse Leblanc

Read more about the project

Maryse Leblanc