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- 1.24. The presence of phosphorus (P) in surface water is a major
cause for water quality degradation in agricultural areas. Available
tools for estimating the relative P contribution from fields include P-
index (PI) models. We performed sensitivity analyses on a PI model,
adapted for the province of Québec, to identify the site characteristics
and input variables impacting most on the calculated PI value. The
probability density functions of the 17 input variables and ten site
characteristics were determined on a 10 301 km2 study area south of
Québec City. Monte Carlo simulations were performed with the
@RISK software and stepwise regressions were used to determine
which variables and characteristics the PI was sensitive to. The PI was
mainly affected by the weights, determined by experts, related to each
site characteristic. When ignoring these weights, 58.7% of the PI
variation was caused by the organic P budget and 11.7% by the
subsurface drain spacing. Results for the input variables showed that
the crop type impacted the most PI by explaining 46.4% of the PI
variation, followed by subsurface drain spacing (12.0%), and amount
of organic P applied to the field (10.9%). This information can be used
by field staff to obtain accurate PI values without wasting human and
financial resources on input variables that contribute little to the final
P index value. Keywords: phosphorus index, sensitivity analysis,
surface water quality, Monte Carlo simulations. 

La présence de phosphore (P) dans les eaux de surface est l'une des
principales causes de la dégradation de la qualité de l'eau en milieu
agricole. Les outils disponibles pour estimer la contribution relative du
P à partir des champs incluent les modèles d'indice de risque de perte
du P (IRP). Nous avons effectué des analyses de sensibilité sur un
modèle IRP adapté pour le Québec, afin d'identifier les caractéristiques
de site et les variables d'entrée qui influencent le plus la valeur de
l'IRP. Les fonctions de distribution des 17 variables d'entrée et des dix
caractéristiques de site ont été déterminées sur une zone d'étude de
10 301 km2 au sud de la ville de Québec. Des simulations de Monte
Carlo ont été effectuées avec le logiciel @RISK, ainsi que des
régressions multiples pas à pas, pour déterminer à quelles
caractéristiques de site et variables d'entrée l'IRP était le plus sensible.
L'IRP était principalement affecté par les poids de chaque
caractéristique de site, poids qui ont été déterminés par un panel
d'experts. En ignorant les poids, 58.7% de la variation de l'IRP était
causé par le bilan en P organique et 11.7% par l'espacement entre les
drains souterrains. Pour les variables d'entrée, c'est le type de culture
qui affectait le plus l'IRP, soit 46.4% de la variation suivi de
l'espacement entre les drains (12%) et de la quantité de P organique
appliquée (10,9%). Ces informations peuvent être utilisées par des
groupes conseils pour obtenir des valeurs précises de l'IRP sans utiliser
inutilement des ressources humaines ou financières sur des variables
qui ne contribuent que peu à la valeur finale de l'IRP. Mots-clés:

indice, risque, phosphore, analyse de sensibilité, qualité de l'eau,
simulations de Monte Carlo.

INTRODUCTION

In Québec, intensive livestock production has resulted in excess
phosphorus (P) in agricultural soils (Giroux and Tran 1996) and
in concentrations of P in surface water above the standard of
0.03 mg/L for aquatic life (MENV 2001). Phosphorus
concentrations from 0.1 to 0.2 mg/L have been observed in the
streams of several agricultural watersheds (Gangbazo 1997;
Painchaud 1996). Phosphorus from agricultural activities has
also been related to the presence of cyanobacteria in 13 lakes in
Alberta (Kotak et al. 2000) and in the Missisquoi Bay on the
USA-Québec border (Blais 2002). Reduction of P losses from
agricultural land is therefore needed if improvement of surface
water quality is to be reached (Dorioz and Trevisan 2000;
Eghball and Gilley 2001). Several solutions have been
considered to reduce P losses to surface water such as, among
others, controlling animal feed (Knowlton et al. 2004) and
creating buffer zones along watercourses (White 1993).
Sharpley et al. (2001) suggested that the reduction of P export
could be done by 1) adjusting P applications to crop
requirements, 2) defining a soil P test value not to be exceeded,
and 3) evaluating potential risks of P losses in order to better
distribute the P applications within or among fields. This last
suggestion implies the use of mathematical models integrating
crop needs and environmental risks (Sims 1998). The fact that
most existing hydrological water quality models, such as SWAT
and HSPF (Borah and Bera 2004), are complex and require too
much data to be used by field staff (Sharpley et al. 2001), has
prompted the development of phosphorus index (P-Index)
models. P-Index models do not provide details regarding the
amount, forms, and transport mechanisms of P to surface water,
but supply the user with an indication of the relative P losses to
surface water from cultivated fields. 

The initial P-Index concept and model was developed by
Lemunyon and Gilbert (1993). It provides a qualitative
estimation of agricultural sites vulnerability to P losses by
incorporating the effect of eight site characteristics related to
either the source (availability) or the transport of P. These eight
site characteristics are: soil erosion, irrigation erosion, runoff
class, soil P test, P fertilizer application and method, and
organic P application and method. The method of Lemunyon
and Gilbert (1993) can be summarized by Eqs. 1-3.
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where:
PI = P-Index for the site,
PLRV = P loss rating value (0 to 8),
WF = weighting factor,
VC = vulnerability category ("none" to "very high"),
V = value of a site characteristic,
fc1 = vulnerability function which assigns a numerical

value to each vulnerability category (e.g.
"medium" corresponds to 2),

fc2 = categorical function that relates the value of a site
characteristic to its vulnerability category (e.g.
15 t/ha corresponds to a "medium" erosion
vulnerability),

i = index for the number of site characteristics, and
n = total number of site characteristics, i.e. eight in

this case.

The method of Lemunyon and Gilbert (1993) is described as
an 8 x 5 matrix, i.e. 8 site characteristics and 5 vulnerability
categories. Because all weighted values (PLRVi × WFi) are
summed, that method is called additive. Other possibilities of
calculating the P-Index include the multiplicative approach by
which source and transport site characteristics are summed
independently and multiplied by each other (Gburek et al. 2000;
Giasson et al. 2003).

To accommodate disparities between regions in the USA,
Canada, and Europe, the model of Lemunyon and Gilbert
(1993) has been modified by deleting or adding site
characteristics. Modifications include characteristics such as
vertical P migration in the soil profile (Giasson et al. 2003;
Bechman et al. 2003), distance between fields and watercourses
(Gburek et al. 2000), presence of filter strips (Jokela 1999),
degree of P saturation (P/Al) (Khiari et al. 2000; Sims et al.
2002), and presence of a freeze/thaw cycle (Uhlen 1989). The
necessity for adjustment of P-Index methods to local conditions
has prompted the Québec provincial government to develop its
own P-index (Beaudet et al. 1998) which has a structure similar
to that of Lemunyon and Gilbert (1993), but with some
characteristics either removed (e.g. irrigation), added (e.g.
subsurface drain spacing), or modified (e.g. fertilization). 

Because P-Index models still need the measurement or
estimation of many input variables to calculate the site
characteristic values, there is a need to identify which input
variables have more impact on the PI value. Sensitivity analyses
have long been recognized as a key tool for quantifying the
importance of the input variables of environmental models
(McCuen 1973). However, maybe because of the wide variety
of P-Index models available, no sensitivity analysis appears to
have been done for any of them. Sensitivity analyses are either
deterministic or stochastic (Zhang and Haan 1996; Biesemans
et al. 2000). Stochastic sensitivity analyses, mostly implemented
by Monte Carlo (MC) simulations, allow the use of complete
probability distribution of input variables, to specify correlation
between input variables and provide probability distribution of

the output variable (Dubus and Brown 2002). Stochastic
sensitivity analyses are preferred for quantifying uncertainty of
environmental models (Hession et al. 1996a; Tarantola et al.
2002), and have been used for P transport in Finland with ICE-
CREAM (Tattari et al. 2001), and for contaminant transport by
RZWQM (Ma et al. 2000). Software has been developed to help
data manipulation, probability distribution identification, control
of convergence, and regression analyses (Tattari et al. 2001;
Dubus and Brown 2002, Hession et al. 1996a). Because of the
large numbers of input variables involved in the calculation of
a P-Index model, input data cannot be sampled all at the same
scale. Biesemans et al. (2000) described the results of a
sensitivity analysis on RUSLE where the probability density
functions (pdf) of the spatial factors were derived from a
sampling density ranging from about 150 to 800 measurements
per hectare, depending on the factor considered. Since spatial
data come from different sources (different acquisition
techniques) sensitivity analyses assume that the errors associated
with different geographical variables are independent and,
therefore, do not introduce a bias in the outcome of the analysis
(Crosetto and Tarantola 2001). For this reason, the pdf of the
input variables were defined based on available data, even
though it was sampled at different scales and its amount varied
greatly from one variable to another. 

The influence of an input variable on the P-Index depends
upon four factors: (1) the categorical function, fc1 in Eq. 2,
(2) the vulnerability function, fc2 in Eq. 3, (3) the weighting
factor, WF in Eq. 1, and (4) the nature of the site characteristic
itself. Functions fc1 and fc2 have not been given much attention;
fc1 usually progresses geometrically with the vulnerability
category, whereas fc2 is mostly based on an arbitrary division of
the range that can be assumed by the site characteristic.
Weighting factors are determined based on professional
judgment and, therefore, arbitrary and subject to questioning.
On the other hand, site characteristic values are clearly defined
and their probability distribution can be determined. Therefore,
the objective of this study was to perform two stochastic
sensitivity analyses of the P-Index model of Beaudet et al.
(1998) for an agricultural region near Québec City. First, the
non-modified method will be used to determine which site
characteristics affect the P-Index when the proposed weighting
factors are used. Second, considering the arbitrary nature of the
weighting factors, another analysis will be performed with
unitary weighting factors to isolate the effect of the site
characteristics and input variables on the variation of the P-
Index.

MATERIALS and METHODS

Study area

The study area corresponds to the agricultural portion of the
former Beauce-Appalaches agricultural region located between
Québec City and the USA-Québec border, and is mainly
devoted to swine and dairy production (Statistic Canada, Census
2001). The former Beauce-Appalaches agricultural region was
chosen because available soil survey reports coincide with its
limits. It has an area of 10,301 km2 of which 17% is occupied by
farmland, 77% by forest, and 6% by urban land. Its altitude
varies from 230 to 700 m AMSL. Latitude ranges between
45o13'N and 46o41'N, and longitude between 70o09'W and
71o52'W. From a sensitivity analysis standpoint, such an area is
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Table 4. Vulnerability level for Phosporous management (Beaudet et

al. 1998).
  

Application
timing

Application method

Incorporation
After

ploughing

Surface
application of
solid fertilizer

Surface
application of 
liquid manure

Pre-sowing
Growing season
Post-harvest

Low
Very low
Moderate

Low
Very low
Moderate

High
Moderate
Very high

Moderate
High

Very high

  

Table 2. Vulnerability level for Runoff (Beaudet et al. 1998).
  

Slope (%)
Curve number for AMCII*

< 50 50 - 60 60 - 70 70 - 80 > 80

< 1
1 - 2
2 - 4
4 - 8

8 - 16
> 16

Very low
Very low
Very low
Very low
Very low
Very low

Very low
Very low
Very low
Very low

Low
Low

Very low
Very low

Low
Moderate
Moderate

High

Very low
Low

Moderate
High

Very high
Very high

Moderate
Moderate
Moderate

High
Very high
Very high

* SCS (1969) curve number for an antecedent moisture content of II.

  

Table 3. Vulnerability level for Preferential flow by soil texture 

(Beaudet et al. 1998).
  

Vulnerability level

Very low Low Moderate High Very high

Sandy loam
Loam

Silty loam
Clay loam

Silty-clay loam
Medium sand

Clay
Coarse sand
Heavy clay

Table 1. The P-Index adapted by Beaudet et al. (1998).
  

Site characteristic
Weighting

factor

Vulnerability level (Phosphorus Loss Rating)

Very low
(1)

Low
(2)

Moderate
(4)

High
(8)

Very high
(16)

Transport
   Erosion (t ha-1 y-1)
   Runoff (see Table 2)
   Preferential flow (see Table 3)
   Subsurface drain spacing (m)

4
4

1.5
1.5

0 - 3

not present

3.6

> 35

6 - 12

25 - 35

12 - 18

15 - 25

> 18

< 15

Source
   Saturation P/A1 (%)
   Soil P content (kg P/ha)
   Total phosphorus (kg P2O5/ha)
   Organic phosphorus (%)
   Mineral phosphorus (%)
   Phosphorus management (see Table 4)

6
6
3
2
1
7

0 - 2.5
0 - 60
< -20
< 50
< 50

2.5 - 5
60 - 150
-20 - 0

50 - 100
50 - 100

5 - 10
150 - 250

0 - 20
100 - 150
100 - 150

10 - 20
250 - 500

20 - 40
150 - 200
150 - 200

> 20
> 500
> 40

> 200
> 200

P-Index 36 - 55 55 - 109 109 - 222 222 - 433 433 - 576

large enough to provide adequate variability in the
various input variables, and at the same time, it is
not so small that results would be very site
specific. Soils are tills, alluvial deposits, and
fluvio-glacial deposits. According to soil surveys,
half of the agricultural area is of the gleysol order,
followed by podzol (29%), and brunisol (18%).
Organic soils and luvisols represent less than 1%
of the area. The mean annual temperature is
3.9oC, and total annual precipitation is 1237 mm,
of which 928 mm is rainfall. The crops are mostly
forage (56.6%) and pasture (25.0%), and the
remainder is cereals (10.5%), corn (7.5%),
vegetables and fruits (MAPAQ 2003).

Description of the phosphorus index 

The adapted P-Index model of Beaudet et al.
(1998) is presented in Table 1. For the sake of
clarity, a capital letter will be used to identify the
input variables and site characteristics. The site
characteristic Erosion is calculated with
RUSLEFAC (Wall et al. 2002), a version of
RUSLE (Renard et al. 1997) adapted for Canada.
Soil P content and Saturation P/Al (ratio of P to
Al) were obtained from Mehlich-3 extraction of P
and Al (CRAAQ 2003). Total phosphorus refers
to the amount of organic and mineral P applied to
the field minus that removed (CRAAQ 2003).
Organic phosphorus is the ratio of the organic P
applied to the field over crop removal from the
field. The same definition applies to Mineral
phosphorus. The relationships between
vulnerability levels and site characteristics of
Runoff, Preferential flow and Phosphorus
management were determined mostly by
professional judgment and presented in Tables 2,
3, and 4, respectively. Subsurface drain spacing
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Table 5. Input variables and their probability distribution characteristics.
  

Input variable n† Scale‡ Distribution
type

Distribution
function

Sand%
Clay%
Silt%
Organic matter content
Field slope
Field length
P/A1 ratio
P Mehlich-3
Rainfall erosivity
Organic P application
Mineral P application
Hydrological soil group
Subsurface drain spacing
Application method
Application timing
Crop type
Ploughing method

539
539
539
n.a.*

35,870
200

14,051
14,051

38
3089
2835
n.a.
n.a.

3106
3106
n.a.
n.a.

Interval
Interval
Interval
Interval
Interval
Interval
Interval
Interval
Interval
Interval
Interval
Ordinal
Ordinal
Nominal
Nominal
Nominal
Nominal

Continuous
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous

Discrete
Discrete
Discrete
Discrete
Discrete
Discrete
Discrete
Discrete

Normal
Gamma

Beta General
Normal

Lognormal
Beta General

Inverse Gausian
Inverse Gausian

Beta General
Empirical
Empirical
Empirical
Empirical
Empirical
Empirical
Empirical
Empirical

† - number of observations used to fit the pdf
‡ - measurement scale
* - not applicable

Fig. 1. Empirical (bars) and fitted (continuous line) for

pdfs for Rainfall erosivity.

reflects the increased possibility of P reaching surface water, via
the subsurface drainage system, by closer drain spacing. The
adapted P-Index of Table 1 is composed of 10 site
characteristics, six for the source of P and four for its transport.
The P-Index is easily calculated once the value of each of the 10
characteristics is known, which in turn must be determined from
the corresponding input variables.

Data sources and probability density functions

Seventeen input variables are required for the calculation of the
ten site characteristics and are listed in Table 5. The sensitivity
analysis of the adapted P-Index method requires the pdf of all
17 input variables in order to calculate the pdf of the 10 site
characteristics and ultimately the pdf of the P-Index. For
interval scale variables (e.g. Sand%), the distributions were
fitted with a continuous pdf function. However, discrete input
variables are measured either on an ordinal scale (e.g.
Hydrological soil group) or a nominal scale (e.g. Crop type)
which precludes the use of continuous pdf, but allows empirical

distributions. The pdf’s were fitted to the
observed values of the continuous input
variables using the distribution fitting
function of @RISK Version 4.5 (Palisade
Corporation, Newfield, MA). The adequacy
of the resulting pdf was examined with the
Chi-square statistic, the probability plot, and
the quantile plot. Table 5 shows the
distribution type, and the continuous
distribution function that was fitted to each
input variable. An extensive set of data was
needed to determine the pdf of each input
variable over the study area. The data
sources and methods for determining the pdf
of the input variables are summarized
below. 

Rainfall erosivity was calculated based
on the 1945 – 1982 daily rainfall and
temperature records from the Québec City
airport using the method of Richardson et al.
(1983) and Selker et al. (1990) adapted for
snowmelt conditions in the province of
Québec (Madramootoo 1988). This analysis
yielded 38 annual Rainfall erosivity values
from which a beta pdf was determined.

Because Québec City is located at the northern end of the study
area (46o48'N, 71o15'W), the Rainfall erosivity pdf was also
determined from the 1941 – 1982 record of the Disraéli station
(45o54'N, 71o21'W), at the southern end of the study area. A
Kolmogorov-Smirnov test showed that the two Rainfall
erosivity empirical distributions were not significantly different
(p < 0.05). The empirical pdf from the Québec airport was,
therefore, used for the study area because of the greater
reliability of its observations. As an example of a continuous
input variable, Fig. 1 shows the empirical and fitted pdf of
Rainfall erosivity. 

Fractions of sand, silt, and clay were obtained from soil
survey reports for each soil series within the four counties
covering the study area: Mégantic (Laflamme et al. 1989),
Dorchester (Pageau 1974), Beauce (Ouellet et al. 1995), and
Frontenac (Dubé and Camiré 1996). To improve the fitted pdf
of these three soil fractions, additional sampled values for the
same soil series were obtained by using data from adjacent
counties: Lotbinière (Baril and Rochefort 1957), Bellechasse
(Baril and Rochefort 1979), Lévis (Laplante 1963), Compton
(Cann and Lajoie 1943), Nicolet (Chouinière and Laplante
1948), Arthabaska (Rompré et al. 1984), and Wolfe (Ouellet
and Rompré 1998). This procedure resulted in total values of
sand, silt, and clay percentages from which the pdf were
determined. To account for the variation in the area covered by
each soil series, the fraction values were weighted according to
the relative area of each soil series within the study area. The
relative area of a given soil series was obtained by dividing the
area of that series by the total area, both areas referring to the
cultivated area. All cultivated areas were determined by
superimposing the soil maps on the LANDSAT 5 TM image
(DBSQ 1996) and by using additional information from the
Québec Ministry of Agriculture database (MAPAQ 2003).
Values of Organic matter content, published in the soil survey
reports previously cited, vary from 0.24 to 43%, an upper bound
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unrealistic for the mineral agricultural soils considered in this
study. Since published soil fraction values were given on a soil
series basis only, i.e. without reference to land use, it was not
possible to differentiate between agricultural and forested areas.
Therefore, in consultation with professionals from the area, we
determined that Organic matter content could be best
represented by a normal distribution with a mean of 4%, and
minimum and maximum values of 2 and 6%, respectively.

The 1996 LANDSAT 5 TM image was used to identify 16
140 fields composing the study area. Because the determination
of Field length for each field would be time consuming, Field
length was calculated from a random sample of 200 fields using
MapInfo Professional version 6.5 (MapInfo Corporation, Troy,
NY). Since the average field size was found to be 14 ha, the
study area was divided into 375 m square cells superimposed
onto a Digital Terrain Model created from the contours lines
and spot heights a the scale of 1:20,000 from the Québec
Ministry of Natural Resources, and for each cell within an
agriculture area, field slope was calculated as the maximum
slope of the cell. Spot checks showed that using a square grid,
instead of actual fields, did not introduce any bias in the slope
distribution. 

Based on soil characteristics (drainage, permeability, soil
texture, structure, depth) found in the four soil survey reports
covering the study area, a value of A, B, C, or D of the
Hydrological soil group (SCS 1969) was assigned to each soil
series. The probability of occurrence of a given Hydrological
soil group was taken as the ratio of the surface area of all series
pertaining to that group to the total cultivated area. Although
there are no recent statistics on subsurface drain spacing in the
study area, it was estimated that drain spacing is always less
than 15 m and that only 20% of the agricultural area is installed
with subsurface drains (Association des entrepreneurs en
drainage agricole du Québec, Ste-Martine, QC). The various
crops grown in the study area were determined based on data
provided by the farmers to the Québec Ministry of Agriculture:
cereals, grain and silage corn, forage, pasture, vegetables and
fruits. Discrete pdf for the phosphorus management factors of
fertilizer Application method and Application timing (Table 4)
were based on a survey of 3106 farmers in the study area (BPR-
GREPA 2000). BPR-GREPA (2000) also provided the discrete
pdf for Ploughing method with 83% of the annual crops under
conservation tillage and 17% under mouldboard ploughing. For
perennial crops only, no-till is practiced.

Probability distributions of the P/Al ratio and P Mehlich-3
input variables were based on 14051 values from the upper
200 mm of the soil profile (1995 - 2004). Mineral P applications
were estimated, on a farm basis, from fertilizer sales, and
included 2835 farms. The use of mineral fertilizer is not
widespread in this area considering that it is mostly devoted to
animal production. Organic P applications were determined
from 3089 farms in the study area and was calculated, on a farm
basis, from the amount of manure produced, crop yield, and soil
fertility. All aforementioned data were provided by the Québec
Ministry of Agriculture (Beaudet P., agr. MAPAQ, Québec).
Farms were either in excess or in deficit of manure with
extremes going from swine production with no spreading land
to cash crop producers without manure, respectively. To
simulate the actual practice, the amount of manure from farms

in excess was equally distributed to those in deficit; this resulted
in a probability distribution with a large proportion of the
observations in the lowest and highest classes, and relatively
few in the middle.

Sensitivity analysis procedure 

The sensitivity analyses were done with the commercial
software @RISK Version 4.5 add-in for Microsoft EXCEL
2000 (Microsoft Corporation, Cambridge, MA). The adapted P-
Index model of Beaudet et al. (1998) was completely specified
in an EXCEL spreadsheet and Monte Carlo simulations were
run within EXCEL. 

When a correlation exists between two or more input
variables and the sensitivity analysis does not consider it, results
of the analysis might be biased (Hession et al. 1996b). To avoid
this, @RISK allows the specification of a correlation matrix
incorporating some or all of the input variables. In our case, this
correlation matrix was incomplete because not all variables are
dependent upon one another (e.g. Organic matter content and
Subsurface drain spacing), or because financial restrictions
made impossible the incorporation of interactions between all
variables in the P-Index model. In this study, a correlation
coefficient was assigned to each input variable pair for which a
correlation appeared obvious. The correlation matrix included
Field slope, Sand%, Silt%, Clay%, P/Al ratio, and P Mehlich-3.
Correlation values were determined based on 275 soil samples
from the province of Québec (Pellerin 2005), and correlation
coefficients ranged between -0.59 (Sand% and Clay%) and 0.62
(P/Al ratio-P Mehlich-3). However, preliminary results showed
that the inclusion of the correlation matrix had no effect on the
results from the sensitivity analyses and, therefore, correlation
between input variables was not considered in the two MC
simulations described in this study. 

To make sure the sum of Clay%, Silt%, and Sand% was
100%, an equation was built-in in the model to correct the
sampled values of these three input variables.

(4)FR FR

FR
cj sj

sk
k

=

=

∑

100

1

3

where:
FRsj = sampled value of fraction j,
FRcj = corrected value of fraction j, and 
j, k = indices for Sand%, Silt% and Clay%.

For the results of an MC simulation to be valid, two
requirements must be met (Haan and Skaggs 2003): 1) input and
simulated correlation matrices must be equal, and 2) input and
simulated variables pdf must be similar. For the first
requirement, examination of the a posteriori correlation matrix
showed all entries to be zeros except for Sand%, Silt% and
Clay%, for which the correlation coefficients ranged from -0.22
to -0.83. These non-zero correlations between soil fractions are
observed despite the null input correlation matrix that was
specified. This was expected because of the ties imposed by
Eq. 4. In addition, results of the MC simulations showed that the
stepwise regression, used for determining which input variables
impacted most the P-Index, excluded some of these variables
that were correlated, such that results are valid despite these
non-zero values in the a posteriori correlation matrix.
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Table 6. Standardized weights and regression coefficients for the two sensitivity analyses.
  

Site charcteristic

P-Index With WF† Without Wf

Scaled‡

WF
Rank

Standard
coefficient

Rank
Standard

coefficient
Rank Partial R2

(1) (2) (3) (4) (5) (6) (7)

Transport
   Erosion
   Runoff
   Preferential flow
   Subsurface drain spacing

0.111
0.110
0.042
0.042

5
4
9
8

0.120
0.023
0.023
0.065

5
9

10
7

0.103
0.020
0.051
0.151

5
10
9
2

0.039
0.002
0.014
0.117

Source
   Saturation P/A1
   Soil P content
   Total phosphorous
   Organic phosphorous
   Mineral phosphorous
   Phosphorous management

0.167
0.167
0.083
0.056
0.028
0.194

2
3
6
7

10
1

0.143
0.135
0.125
0.098
0.028
0.240

2
3
4
6
8
1

0.082
0.077
0.144
0.158
0.097
0.117

7
8
3
1
6
4

0.035
0.030
0.074
0.587
0.038
0.043

† - weighting factor
‡ - scaled coefficients

The second requirement was met because each simulation
consisted of a large number of iterations. In this study, a
sensitivity analysis consists of a single simulation and a
simulation consists of a certain number of iterations. During an
iteration, each input variable is sampled taking into account its
own pdf, so that if the number of iterations is large enough the
sampled pdf reproduces the input pdf. In our case, 20,000
iterations were specified, such that 20 values of percentiles (0%,
5%, … 95%, 100%), the mean, and the standard deviation of the
sampled and input pdf did not differ by more than 1.5%. The
probability distribution of each of the 17 input variables was
specified as either continuous or discrete, and sampling of all
pdf was done by the Latin Hypercube technique, a refinement of
the MC sampling (Tarantola et al. 2002). Results of a simulation
provided 20,000 values for each variable required in the
calculation of the P-Index, i.e. 17 input variables, 10 site
characteristics, the P-Index and all other intermediate variables.
These 20,000 values formed the database from which the
sensitivity of the P-Index could be determined. 

The effect of an input variable, or a site characteristic, on the
P-Index, was evaluated by multiple stepwise regressions, which
yielded regression coefficients standardized to be comparable
to each other. The stepwise procedure kept a variable in the
model if it was statically significant (p < 0.05). The importance
of an input variable was also quantified by providing its partial
R2. Because site characteristics are based on an ordinal scale
(the vulnerability categories), results of the MC simulations
involving site characteristics were analyzed with the stepwise
regression tool provided by @RISK. For input variables,
however, the regression included interval as well as ordinal
scale variables, but nominal scale variables could not be dealt
with by @RISK. Consequently, the regression for input
variables was handled by procedure REG (SAS Version 9.1,
Raleigh, NC), and regression coefficient estimates were
standardized by multiplication with the ratio of the standard
deviation of the input variable to that of the P-Index. Ordinal
variables were transformed into interval variables by assigning

to each value a numerical equivalent. For example, the four
Hydrological soil group were assigned their mean infiltration
values as defined by the SCS (1969), i.e. A = 9.53 mm/h, B =
5.71 mm/h, etc. The four nominal variables were introduced into
the regression model using dummy variables, i.e. a nominal
variable with c classes was represented by c-1 dummy variables
with the last level taken as the reference (Neter et al. 1985). For
all regressions, the normality assumption was verified with the
Shapiro-Wilk test, and the homogeneity of variance was
confirmed visually from the residual plots. 

Two MC simulations were performed: one with the
weighting factors (WF) and the other without any weighting.
The sensitivity analysis, with the WF shown in Table 1,
evaluated the adapted P-Index method as presented by Beaudet
et al. (1998). Because the WF have an important effect on the P-
Index, and because of their arbitrary nature (Lemunyon and
Gilbert 1993), we decided to investigate a situation for which all
WF were set to 1.0, i.e. the P-Index was calculated by:

(5)PI PLRVi
i

n

=
=

∑
1

The motivation to include that simulation was prompted by
the WF not having the physical significance of the input
variables, and by field results of the same model (Goulet et al.
2006) where the correlation between the calculated P-Index and
measured P losses was increased from 0.63 to 0.73 by using
weighting factors of 1.0 instead of those of Table 1. Therefore,
deleting the WF is thought to estimate the direct effect of the
input variables on the P-Index, and might help experts to assign
improved WF values.

RESULTS and DISCUSSION

Simulation with weighting factors

Results of the sensitivity analysis using the weighting factors are
presented in columns (3) and (4) of Table 6. To compare the
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Table 7. Standard regression coefficients and partial R2 for the

input variables.
  

Input variable† Standard
coefficient

Partial R2 Model R2

Crop type
   Cereals
   Corn - grains
   Corn - silage
   Forage
   Pasture
   Vegetables
   Fruits
Subsurface drain spacing
Organic P application
Application timing
   Pre-sowing
   Growing season
   Post-harvest
P/A1 ratio
P Mehlich-3
Mineral P application
Application method
   Incorporation
   After ploughing
   Surface application - solid
   Surface application - liquid
Field slope
Hydrological soil group
Clay%
Rainfall erosivity
Sand%
Field length
Organic matter content

n.a.‡

-0.154
-0.204
-0.205
-0.934
-0.188
-0.053
0.000
0.348
0.331
n.a.

-0.231
-0.214
0.000
0.181
0.167
0.331
n.a.

-0.098
-0.125
0.019
0.000
0.053
-0.042
-0.047
0.021
-0.014
0.011
-0.006

0.464
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.

0.120
0.109
0.036
n.a.
n.a.
n.a.

0.033
0.028
0.028
0.024
n.a.
n.a.
n.a.
n.a.

0.003
0.002
0.002

<0.001
<0.001
<0.001
<0.001

0.464
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.

0.584
0.693
0.729
n.a.
n.a.
n.a.

0.762
0.790
0.818
0.842
n.a.
n.a.
n.a.
n.a.

0.845
0.847
0.849
0.849
0.849
0.849
0.849

† - Silt% and Ploughing method were not significant at the 5% level
‡ - not applicable

weighting factors and the standardized regression coefficients,
the former were scaled such that their sum was equal to unity, as
shown in column (1). The column (4) presents the rank of each
site characteristic: a value of 1 was assigned to the site
characteristic most influencing the P-Index, i.e. the one showing
the largest coefficient, and 10 to the one with the least influence.
The rank represents the order of importance of the regression
coefficients in column (3). This sensitivity analysis shows that
Phosphorus management was the most influential characteristic,
followed by Saturation P/Al, Soil P content, and Total
phosphorus. In fact, site characteristics pertaining to the Source
group had the highest influence on the P-Index, with an average
rank of 4.0 whereas the influence of the Transport group was
less, with an average rank of 7.8.

It is interesting to compare the ranks derived from this
simulation to the corresponding ranks of the adapted P-Index
method, i.e. columns (4) and (2) of Table 6. Both ranks are in
positions close to one another, except for Runoff, Total
phosphorus, and Mineral phosphorus. Despite these differences,
the general pattern of the P-Index ranks is similar to that of the
sensitivity analysis, which averages a rank of 4.8 for the Source
group and 6.5 for the Transport group. The WF values in Eq. 1
greatly modify the P loss rating values (PLRV) and the resulting

P-Index. Therefore, the arbitrary nature of the WF may
mask the physical nature of the phenomena represented
by the PLRV, and a second analysis was performed by
setting all WF to 1.0.

Simulation without weighting factors 

Effect of site characteristics  Results of the sensitivity
analysis performed with the WF set to 1.0 are presented
in Table 6. Columns (5), (6), and (7) present the standard
regression coefficients, corresponding ranks, and partial
R2, respectively. The model R2 for this regression is
0.979. The comparison between ranks of column (6) with
those of column (4) shows that the site characteristics
affecting most the P-Index are different; only Erosion has
the same rank. This observation confirms the importance
of the WF in the results of the sensitivity analysis and the
importance of selecting them cautiously. The most
influential site characteristics are Organic phosphorus,
Subsurface drain spacing, Total phosphorus, and
Phosphorus management. The Erosion site characteristic
comes in fifth position. Considering that this site
characteristic explains only 3.9% of the P-Index variation
(partial R2 of 0.039), its presence in the adapted P-Index
model might be questioned for the study area because the
Erosion site characteristic is the most demanding in terms
of amount of data and computation. For the source-group
site-characteristics, the average rank is 4.8 and the sum of
the partial R2 is 80.7%, compared to 6.5 and 17.2%,
respectively, for the transport group site-characteristics.
Leyten et al. (2003) also observed the predominance of
source-group site-characteristics in their P-Index model.

One single site characteristic, Organic phosphorus,
explains 58.7% of the P-Index variation, whereas the
second most important, Subsurface drain spacing,
explains 11.7%. The great sensitivity of the P-Index to
Organic phosphorus and Subsurface drain spacing might

be explained by the form of the discrete pdf observed for these
input variables. The discrete distribution of Organic phosphorus
application has a high relative frequency for the low class (10.0-
10.5 kg P/ha) and the high class (42.5-43 kg P/ha), whereas
Subsurface drain spacing is characterized by a discrete pdf with
only two classes: 20% of the agricultural area has a tile drainage
system with a spacing < 15 m, and 80% has no subsurface
drains. In the extreme case of Subsurface drain spacing, each
iteration sampled a drain spacing that corresponded either to a
very high or a very low vulnerability category. Variables with a
pdf showing important variations will impact more on the P-
Index than those with a uniform distribution. In regions with
large differences in organic phosphorus application or a wide
range of subsurface drain spacing, results of the sensitivity
analysis might be different and the ranks of the site character-
istics might vary. Therefore, results of a sensitivity analysis will
be influenced not only by the P-Index model selected, but also
by the distribution of the various input variables.

Effect of input variables  Results from the simulation without
weighting factors were used to investigate the sensitivity of the
P-Index to each input variable presented in Table 5. In Table 7,
input variables are ordered as they were introduced into the
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Fig. 2. Probability distribution of (a) Subsurface drain

spacing and (b) P Mehlich-3.

stepwise model. The regression model explained 84.9% of the
P-Index variation. Two input variables, Ploughing method and
Silt%, were not included because they were not significant (p >
0.05). The low significance of Silt% is explained by the built-in
relationship that forces the soil fractions to sum up to 100%, and
which resulted in a correlation coefficient of -0.83 between
Silt% and Sand% in the a posteriori correlation matrix. Sand%
was likely selected by the model because it enters in the
calculation of two site characteristics, Erosion and Preferential
flow, while Silt% only influenced the Erosion characteristic. 

Crop type is the input variable that impacted most the P-
Index, with a partial R2 of 0.464, followed by Subsurface drain
spacing (partial R2 = 0.120). The considerable sensitivity of the
P-Index to Crop type is clearly due to the use of this variable in
the calculation of five of the ten site characteristics. Crop type
is used to determine the factor C in RUSLEFAC, i.e. the
Erosion characteristic. It is also needed for estimating the curve
number and therefore the Runoff site characteristic. In addition,
Crop type is required to calculate the crop removal of P from
the field, which affects Total phosphorus, Organic phosphorus,
and Mineral phosphorus site characteristics. In a situation where
the P-Index is calculated for one or a few fields, there is almost
no possibility of assigning the wrong crop to a given field.
However, if the P-Index method is to be used on a regional basis

with thousands of fields, it is worthwhile spending resources to
collect accurate information on crop types. For the three
nominal variables included in the regression model (Crop type,
Application timing, and Application method), the use of dummy
variables allowed determination of the standard coefficients
(Table 7) which can be seen as correlation coefficients, i.e.
larger absolute values mean more impact on the P-Index, and
the sign indicates an increase or a decrease of the P-Index. For
Crop type, forage has the greatest negative effect on the P-Index
(-0.934), i.e. forage is the crop which contributed most to reduce
the P-Index in the study area. At the other end, fruits showed no
effect on the P-Index. The negative values of the standard
coefficients for different crops of the Crop type variable are
closely related to the phosphorus uptake from the soil, which
reduces the risk of transporting P to surface waters, a risk
represented by the P-Index. The magnitude of this reduction is
related to that of P uptake by the crop: 21.67 kg P/ha for forage,
7.84 kg P/ha for grain corn, and only 1.06 kg P/ha for fruits,
with standard coefficients of -0.934, -0.204 and 0.000,
respectively. Crops contributing most to decrease the P-Index
do not provide much insight regarding the P-Index sensitivity to
input variables, but show that this P-Index model is coherent
with the accepted knowledge that phosphorus losses are
inversely related to the crop P uptake.

The next most important input variables are Subsurface
drainage and Organic P application, with standard coefficients
of 0.348 and 0.331, respectively, and partial R2 of 0.120 and
0.109 (Table 7). As opposed to the Crop type variable, these
standard coefficients are positive, i.e. they contribute to increase
the value of the P-Index. The partial R2 for Subsurface drain
spacing is almost the same for the input variables analysis
(0.120) and the site characteristics analysis (0.117) because
there are no intermediary calculations between the input
variable and its corresponding site characteristic. As mentioned
above, the relative importance of Subsurface drain spacing may
be explained by a reduced number of classes. In addition, since
there are only two classes of subsurface drainage spacing in the
study area, very low and very high (Fig. 2), the positive standard
coefficient indicates that the presence of subsurface drains
increases the P-Index. In fact, Sims et al. (1998), Gächter et al.
(1998) and Jamieson et al. (2003) observed that as much as 50%
of annual P losses took place by subsurface drains. Organic P
application has an impact almost similar to Subsurface drain
spacing in terms of both standard coefficient and partial R2. The
positive standard coefficient of 0.331 (Table 7) implies a higher
contamination risk to surface waters with increasing amounts of
organic P applied to the field. The number of site characteristics
affected by Organic P application and Mineral P application is
the same for both input variables, i.e. Total P and Organic P for
Organic P application, and Total P and Mineral P for Mineral P
application. However, the impact of Organic P application on
the P-Index is greater than the Mineral P application, with
partial R2 of 0.109 and 0.028, respectively. Since the study area
is mostly dedicated to animal production, the predominance of
Organic P application over Mineral P application is caused by
larger amounts applied (average of 25.8 versus 3.0 kg P ha-1 y-1,
respectively), and by a greater variability in the applied
quantities (standard deviation of 9.6 vs. 3.8 kg P ha-1 y-1). 

The three input variables discussed above (Crop type,
Subsurface drain spacing, and Organic P application) are those
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impacting most the P-Index, with a model R2 of 0.693.
Considering that the total model R2 is 0.849 (Table 7) means
that most of the information to calculate the P-Index
(0.693/0.849 x 100 = 81.6%) could be obtained by gathering
good quality information for these three input variables, out of
the 17 required by the model of Beaudet et al. (1998). Although
information about the 17 input variables is required to calculate
the P-Index, results from Table 7 show that a user should
concentrate to get accurate values for Crop type, Subsurface
drains and Organic P application, while estimated or
approximate values could be used for the remaining variables.
A similar sensitivity analysis should be performed for areas
where the use of a P-Index is planned for identification of the
important input variables, and ultimately to determine the
human and financial resources needed.

Among the remaining input variables with some importance
is the Application timing with a partial R2 of 0.036. The
corresponding  standard  coefficients of this nominal variable
are  -0.231 for Pre-sowing, -0.214 for Growing season, and
0.000 for Post-harvest. Hence, both Pre-sowing and Growing
season fertilization will decrease the value of the P-Index,
compared to Post-harvest fertilization that has no effect. This is
coherent with the vulnerability levels defined in Table 4 since,
whatever the Application method, the risk to surface water
increases from pre-sowing to growing season to post-harvest.
Therefore, the sensitivity analysis reflects the structure of the P-
Index model used but, in addition, quantifies the effect of the
input variables. In a field situation, the sooner the fertilizer is
applied, the longer the crop uptake period, and the lesser the
potential risk of P transport to surface water.

Similar to Subsurface drain spacing, the site characteristics
Saturation P/Al and Soil P content are both described by a
single input variable, P/Al ratio and P Mehlich-3, respectively.
For this reason, the partial R2 values of these site characteristics
are close to those of the corresponding input variables, with
0.035 and 0.033, respectively, for saturation, and 0.030 and
0.028 for P content (Tables 6 and 7). Both variables have
positive standardized coefficients, indicating a value of the P-
Index increasing with the value of theses variables, a result that
confirms the P-Index model structure. Contrary to Subsurface
drain spacing, which also defines a single site characteristic,
these input variables do not rank very high as input variables
impacting the P-Index. Conceptually, P/Al ratio and P Mehlich-
3 are potentially important causes of surface water P
contamination. The difference of partial R2 between Subsurface
drainage (0.120) and P Mehlich-3 (0.028) might be partly
explained by the difference in these input variables distribution,
as mentioned above for Subsurface drain spacing (Table 7).
Figure 2 shows the pdf of these two variables, the characteristics
of which are potential causes for the difference in partial R2. In
the case of Subsurface drain spacing, not only the pdf is
discrete, but the only two classes used are located at the
extremities of the distribution. However, the pdf of P Mehlich-3
is continuous and shows a smooth variation which attenuates the
impact on the P-Index. Our data show that the P-Index is more
sensitive to input variables defined by discrete pdf. In Table 7,
six of the eight most important variables, i.e. those with a partial
R2 above 0.01, have discrete pdf, and these six variables explain
64.4% of the P-Index variation, compared to 19.8% for the two
variables with a continuous pdf (P/Al ratio and P Mehlich-3).

Discrete pdfs introduce jumps from class to class, which
artificially increases the importance of the variable in the
sensitivity analysis. This discrete nature of the input variable pdf
is compounded by the use of the categorical function, fc2 in
Eq. 3, which reduces interval scale values to ordinal scale
values. To avoid this loss of information, Sharpley et al. (2003)
suggested a method which does not use categorical functions.

The last two input variables which have some impact on the
P-Index are the Mineral P application and the Application
method, with partial R2 of 0.028 and 0.024, respectively
(Table 7). For Application method, values for Incorporation and
After ploughing have negative signs for the standard
coefficients, which means that the use of these methods will
reduce the P-Index, whereas Surface application values are
either positive or zero, which implies an increase in the P-Index
or no effect at all, respectively. In Table 7, input variables with
a partial R2 below 0.01 were statistically significant at p < 0.05,
but their practical contributions to the variation of the P-Index
is insignificant since together these seven variables contribute
only 0.7% to the risk of surface contamination by phosphorus.

Results presented in this paper will be of help to calculate P-
Index on a field by field basis, or on a regional basis, in the
study area. The sensitivity method presented could guide people
from other areas to develop their own sensitivity analysis for
evaluating the input variables on which most resources should
be allocated without significant loss of precision. The software
@RISK was useful to perform the different tasks related to the
sensitivity analyses, but had the shortcoming of not allowing
nominal variables in the regressions. Regression information
provided by the procedure REG of SAS proved useful in
validating the P-Index model structure.

CONCLUSIONS

Monte Carlo simulations were performed to determine the
sensitivity of a P-Index model, adapted to the province of
Québec, including ten site characteristics and 17 input variables.
Results from the analysis were applied to the 10,301 km2 study
area located south of Québec City. The following conclusions
can be drawn from this study:

1. The results of two sensitivity analyses, with and without
weighting factors, showed that the weighting factors applied
to the site characteristics had a dominant effect on the P-
Index value. To remove this arbitrarily effect from the
model, subsequent results refer to the analysis performed
without weights.

2. The Erosion site characteristic explained only 3.9% of the P-
Index variation, even though it is the most demanding in
terms of input data and computation.

3. Site characteristics related to the Organic P budget and
Subsurface drain spacing explained 58.7 and 11.7%
respectively, of the P-Index variation. The importance of
these characteristics is partly due to the high frequency
observed at both ends of their discrete distributions.

4. Crop type was the most influential input variable since it
explained 46.4% of the P-Index variation. The variable Crop
type is important in the model because it contributes to the
calculation of five out of the ten site characteristics. The
second most important variable was Subsurface drain
spacing which explained 12.0% of the P-index variation.
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5. Input variables Crop type, Subsurface drain spacing and
Organic P application were responsible for more than 80%
of the explainable P-Index variations.

6. Input variables modeled by discrete distributions had more
impact on the P-Index than those modeled with continuous
distributions. Out of the eight most important variables, six
had a discrete distribution and explained 64.4% of the P-
Index variation, whereas only two had a continuous
distribution with a contribution of 19.8% to the P-Index
variation. These eight variables contributed 84.2% to the
maximum model R2 of 84.9%. 
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